

Motion The Future

LTROBOT

Tel: +86-512-66317439

Address: 22-4 Que mei dongroad, Mudu town, wuzhong district, Suzhou, Jiangsu, China.

Website: www.opalmotion.com

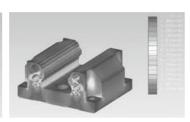
Email: Linearguide@opalmotion.com

SR series

SR Series

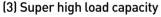
High Rigidity Roller Type


1. SR Series – High Rigidity Roller Type Linear Guide


1-1 Advantages and features

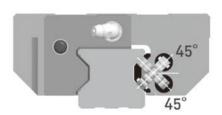
The new SR series from LTROBOT features a roller as the rolling element instead of steel balls. The roller series offers super high rigidity and very high load capacities. The SR series is designed with a 45-degree angle of contact. Elastic deformation of the linear contact surface, during load, is greatly reduced thereby offering greater rigidity and higher load capacities in all 4 load directions. The SR series linear guide offers high performance for high-precision manufacturing and achieving longer service life.

(1) Optimal design


FEM analysis was performed to determine the optimal structure of the block and the rail. The unique design of the circulation path allows the SR series linear quide to offer smoother linear motion.

(2) Super high rigidity

The SR series is a type of linear guide that uses rollers as the rolling elements. Rollers have a greater contact area than balls so that the roller guide features higher load capacity and greater rigidity. The figure shows the rigidity of a roller and a ball with equal volume.



With the four rows of rollers arranged at a contact angle of 45-degrees, the SR series linear guide has equal load ratings in the radial, reverse radial and lateral directions. The SR series has a higher load capacity in a smaller size than conventional, ball-type linear guides.

Lateral Load(kN)

(4) Operating life increased

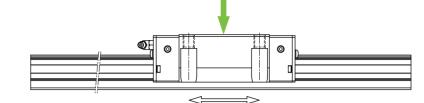
Compare with the ball element, the contact pressure of rolling element is distributed on the line region. Therefore, stress concentration was reduced siginificantly and the SR series offers longer running life. The nominal life of SR series can be calculated by using Eq.

The acting load will affect the nominal life of a linear guide. Based on the selected basic dynamic rated load and the actual load. The nominal life of ball type and roller type linear guide can be calculated by Eq.2.5 respectively.

$$L = \left(\frac{C}{P}\right)^{\frac{10}{3}} 100 \text{km} = \left(\frac{C}{P}\right)^{\frac{10}{3}} 62 \text{mile}$$
 Eq. 2.5

If the environmental factors are taken into consideration, the nominal life is influenced greatly by the motion conditions, the hardness of the raceway, and the temperature of the linear guide. The relationship between these factors is expressed in Eq. 2.6.

L : Nominal life


C: Basic dynamic load rating

P : Actual load

f_h: Hardness factor ft : Temperature factor

fw: Load factor

(5) Test Data 1. Nominal life test

Model of the test system

Table 1-1-1

Tested model 1: SRH35CA

Preload: ZA class Max. Speed: 60m/min Acceleration: 1G Stroke: 0.55m

Lubrication: grease held every 100km

External load: 15kN Traveling distance: 1135km

Test results:

The nominal life of SRH35CA is 1000km. After traveling 1135km, fatigue flaking did not appear on the surface of the raceway or rollers.

2. Durability Test

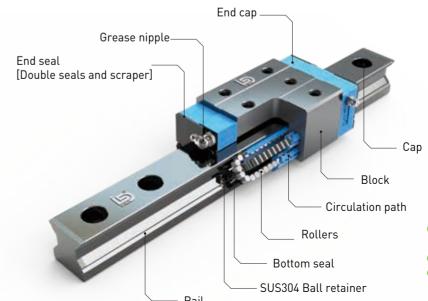
Tested model 2: SRW35CC

Preload: ZA class Max. Speed: 120m/min Acceleration: 1G Stroke: 2m

Lubrication: oil feed rate: 0.3cm3/hr

External load: 0kN

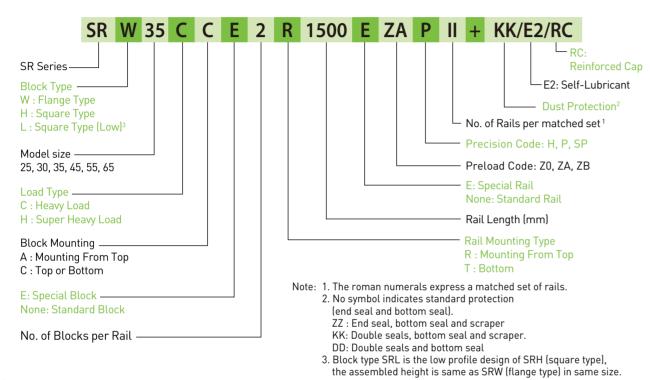
Traveling distance: 15000km


Test results:

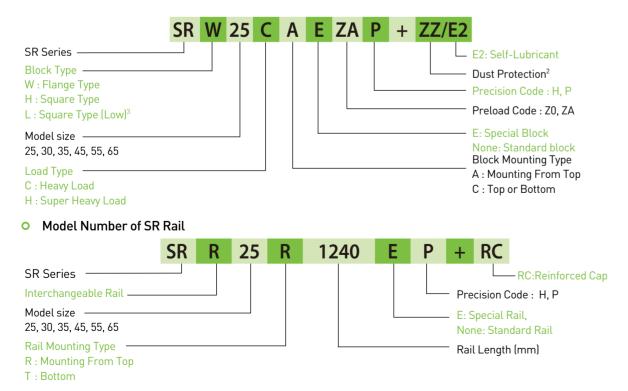
Fatigue flaking did not appear on the surface of the raceway or rollers after traveling 15000km.

Note: The data listed are from samples.

1-2 Construction of SR Series


- O Rolling circulation system: Block, Rail, End cap, Circulation path, rollers, SUS304 Ball retainer
- O Lubrication system: Grease nipple and piping joint O Dust protection system: End seal, Bottom seal,
- Cap, Double seals and Scraper

1-3 Model Number of SR series


SR series linear guides are classified into non-interchangeable and interchangeable types. The sizes of these two types are the same as one another. The main difference is that the interchangeable type of blocks and rails can be freely exchanged and they can maintain P-class accuracy. Because of strict dimensional control, the interchangeable type linear guides are a wise choice for customers when rails do not need to be matched for an axis. The model number of the SR series identifies the size, type, accuracy class, preload class, etc.

(1) Non-interchangeable type

(2) Interchangeable type

Model Number of SR Block

1-4 Types

(1) Block types

LTROBOT offers two types of guide blocks, flange and square type. Because of the low assembly height and large mounting surface, the flange type is excellent for heavy moment load applications.

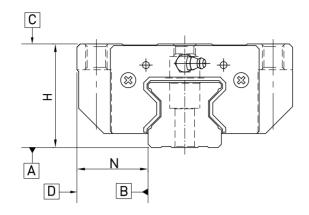
Table 1-1-2 Block Types

Туре	Model	Shape	Height (mm)	Rail Length (mm)	Main Applications
Square	SRH-CA SRH-HA		28 ↓ 90	100 ↓ 4000	 Automation Systems Transportation equipment CNC machining centers Heavy duty cutting machines CNC grinding machines
Square	SRL-CA SRL-HA		24 ↓ 70	100 ↓ 4000	 Injection molding machines Plano millers Devices requiring high rigidity Devices requiring high load capacity
Flange	SRW-CC SRW-HC		24 ↓ 90	100 ↓ 4000	• Electric discharge machines

(2) Rail types

In addition to the standard top mounting type, LTROBOT also offers the bottom mounting type of rails.

Table 1-1-3 Rail Types


Motion the future

LTROBOT ®

SR series

1-5 Accuracy Classes

The accuracy of the SR series can be classified into four classes: high (H), precision (P), super precision (SP) and ultra precision (UP). Customers may choose the class by referencing the accuracy requirements of the applied equipment.

(1) Accuracy of non-interchangeable

Table 1-1-4 Accuracy Standards

- 1	Jnit•	mm	

Item	SR - 25, 30, 35			
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)
Dimensional tolerance of height H	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Dimensional tolerance of width N	± 0.04	0 - 0.04	0 - 0.02	0 - 0.01
Variation of height H	0.015	0.007	0.005	0.003
Variation of width N	0.015	0.007	0.005	0.003
Running parallelism of block surface C to surface A		Se	e Table 1-1-12	
Running parallelism of block surface D to surface B		Se	e Table 1-1-12	

Table 1-1-5 Accuracy Standards

- 11	Init•	mm
_	mil.	

Item	m SR - 45, 55				
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)	
Dimensional tolerance of height H	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02	
Dimensional tolerance of width N	± 0.05	0 - 0.05	0 - 0.03	0 - 0.02	
Variation of height H	0.015	0.007	0.005	0.003	
Variation of width N	0.02	0.01	0.007	0.005	
Running parallelism of block surface C to surface A		Se	e Table 1-1-12		
Running parallelism of block surface D to surface B		Se	e Table 1-1-12		

Table 1-1-6 Accuracy Standards

	11111	: [[]	
_			

Offic: Itilii					
Item	SR - 65				
Accuracy Classes	High (H)	Precision (P)	Super Precision (SP)	Ultra Precision (UP)	
Dimensional tolerance of height H	± 0.07	0 - 0.07	0 - 0.05	0 - 0.03	
Dimensional tolerance of width N	± 0.07	0 - 0.07	0 - 0.05	0 - 0.03	
Variation of height H	0.02	0.01	0.007	0.005	
Variation of width N	0.025	0.015	0.01	0.007	
Running parallelism of block surface C to surface A	ce A See Table 1-1-12				
Running parallelism of block surface D to surface B	e B See Table 1-1-12				

(2) Accuracy of interchangeable

Table 1-1-7 Accuracy Standards

Unit: mm

Item	SR - 25, 30, 35		
Accuracy Classes	High (н)	Precision (P)	
Dimensional tolerance of height H	± 0.04	± 0.02	
Dimensional tolerance of width N	± 0.04	± 0.02	
Variation of height H	0.015	0.007	
Variation of width N	0.015	0.007	
Running parallelism of block surface C to surface A	A See Table 1-1-12		
Running parallelism of block surface D to surface B	See Tab	le 1-1-12	

Table 1-1-8 Accuracy Standards

Unit: mm

Item	SR - 45, 55		
Accuracy Classes	High (н)	Precision (P)	
Dimensional tolerance of height H	± 0.05	± 0.025	
Dimensional tolerance of width N	± 0.05	± 0.025	
Variation of height H	0.015	0.007	
Variation of width N	0.02	0.01	
Running parallelism of block surface C to surface A	See Table 1-1-12		
Running parallelism of block surface D to surface B	See Tab	le 1-1-12	

Table 1-1	1_0	Accuracy	Stand	arde
Table I-I	1-9 <i>1</i>	ACCUIACV	Stanu	arus

Unit: mm

Item	SR - 65	
Accuracy Classes	High (н)	Precision (P)
Dimensional tolerance of height H	± 0.07	± 0.035
Dimensional tolerance of width N	± 0.07	± 0.035
Variation of height H	0.02	0.01
Variation of width N	0.025	0.015
Running parallelism of block surface C to surface A	See Table 1-1-12	
Running parallelism of block surface D to surface B	See Table	e 1-1-12

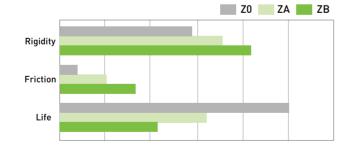
LTROBOT ®

SR series

(3) Accuracy of running parallelism

Table 1-1-10 Accuracy of Running Parallelism

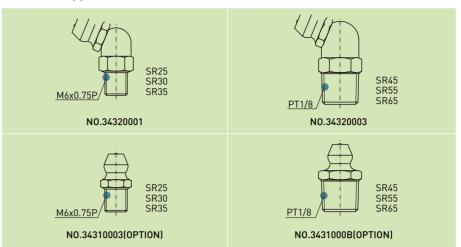
Rail Length (mm)	Accuracy (μm)				
Kait Leligtii (IIIII)	Н	Р	SP	UP	
~ 100	7	3	2	2	
100 ~ 200	9	4	2	2	
200 ~ 300	10	5	3	2	
300 ~ 500	12	6	3	2	
500 ~ 700	13	7	4	2	
700 ~ 900	15	8	5	3	
900 ~ 1,100	16	9	6	3	
1,100 ~ 1,500	18	11	7	4	
1,500 ~ 1,900	20	13	8	4	
1,900 ~ 2,500	22	15	10	5	
2,500 ~ 3,100	25	18	11	6	
3,100 ~ 3,600	27	20	14	7	
3,600 ~ 4,000	28	21	15	7	


1-6 Preload

A preload can be applied to each guide using oversized rollers. Generally, a linear motion guide has negative clearance between the raceway and rollers to improve stiffness and maintain high precision. The SR series linear guide offers three standard preloads for various applications and conditions.

Table 1-1-11

Class	Code	Preload	Condition
Light Preload	Z0	0.02C~ 0.04C	Certain load direction, low impact, low precision required
Medium Preload	ZA	0.07C~0.09C	High rigidity required, high precision required
Heavy Preload	ZB	0.12C~ 0.14C	Super high rigidity required, with vibration and impact


The figure shows the relationship between the rigidity, friction and nominal life. A preload no larger than ZA would be recommended for smaller model sizes to avoid over-preload affecting the life of the guide.

1-7 Lubrication

(1) Grease

Grease nipple

Mounting location

The standard location of the grease fitting is at both ends of the block, but the nipple can be mounted in the side or the top of block. For lateral installation, we recommend that the nipple be mounted at the non-reference side, otherwise please contact us. It is possible to carry out the lubrication by using an oil-piping joint. The figure shows the locations of the grease fitting.

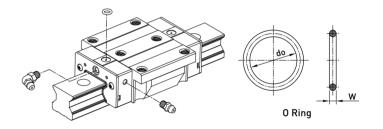
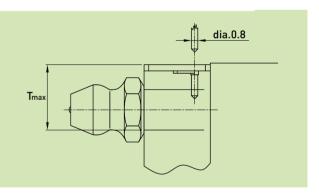



Table 1-1-12 O-Ring size and max. permissible depth for piercing

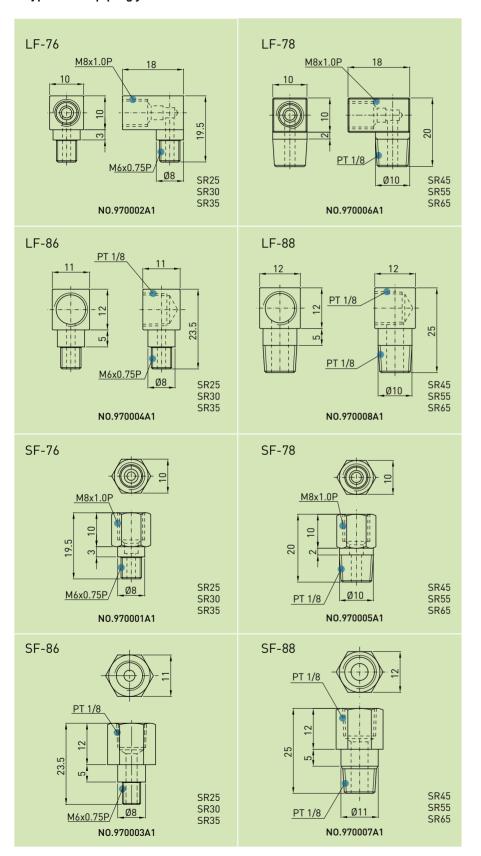
Size	0-Ring		Lube hole at top: max. permissible depth for piercing
	do (mm)	W (mm)	T _{max} (mm)
SR25	7.5±0.15	1.5±0.15	5.8
SR30	7.5±0.15	1.5±0.15	6.2
SR35	7.5±0.15	1.5±0.15	8.65
SR45	7.5±0.15	1.5±0.15	9.5
SR55	7.5±0.15	1.5±0.15	11.6
SR65	7.5±0.15	1.5±0.15	14.5

O The oil amount for a block filled with grease

Table 1-1-13 The oil amount for a block filled with grease

Size	Heavy Load(cm³)	Super Heavy Load(cm³)	Size	Heavy Load(cm³)	Super Heavy Load(cm³)
SR25	7	8	SR55	28	35
SR30	9	10	SR65	52	63

Frequency of replenishment

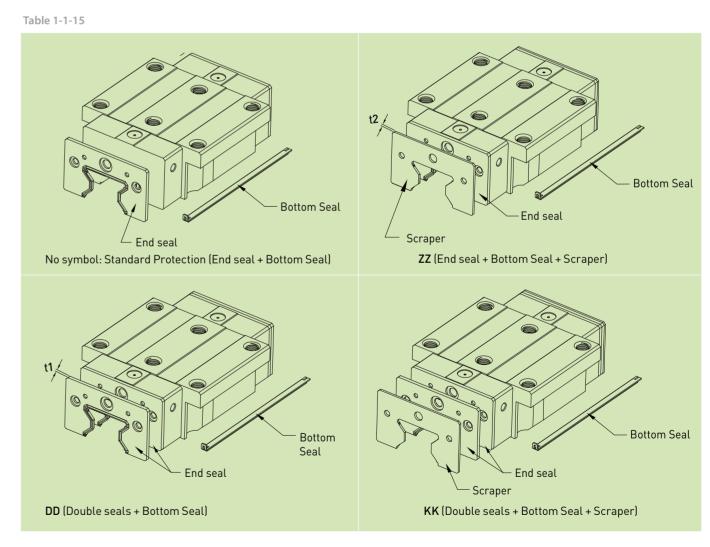

Check the grease every 100 km, or every 3-6 months.

(2) Oil

The recommended viscosity of oil is about 32~150cSt. If you need to use oil-type lubrication, please inform us.

Types of oil piping joint

Oil feeding rate


Table 1-1-14 oil feed rate

Size	Feed rate (cm³/hr)
SR25	0.167
SR30	0.2
SR35	0.23
SR45	0.3
SR55	0.367
SR65	0.433

1-8 Dust Proof Accessories

(1) Codes of accessories

If the following accessories are needed, please add the code followed by the model number.

Motion the future

LTROBOT ® SR series

(2) End seal and bottom seal

To prevent life reduction caused by iron chips or dust entering the block.

(3) Double seals

Enhances the wiping effect, foreign matter can be completely wiped off.

Table 1-1-16 Dimensions of end seal

Size	Thickness (t1) (mm)	Size	Thickness (t1) (mm)
SR25 ES	2.2	SR45 ES	3.6
SR30 ES	2.4	SR55 ES	3.6
SR35 ES	2.5	SR65 ES	4.4

(4) Scraper

The scraper removes high-temperature iron chips and larger foreign objects.

Table 1-1-17 Dimensions of scraper

Size	Thickness (t2) (mm)	Size	Thickness (t2) (mm)
SR25 SC	1.0	SR45 SC	1.5
SR30 SC	1.5	SR55 SC	1.5
SR35 SC	1.5	SR65 SC	1.5

(5) Bolt caps for rail mounting holes

Caps are used to cover the mounting holes to prevent chips or other foreign objects from collecting in the holes. The caps will be enclosed in each rail package.

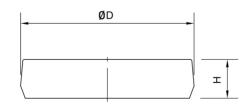


Table 1-1-18 Dimensions of Bolt Caps for Rail Mounting Holes

Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)	Rail size	Bolt size	Diameter(D) (mm)	Thickness(H) (mm)
SRR25	M6	11.15	2.5	SRR45	M12	20.3	4.6
SRR30	M8	14.2	3.3	SRR55	M14	23.5	5.5
SRR35	M8	14.3	3.3	SRR65	M16	26.6	5.5

(6) Dimensions of block equipped with the dustproof parts

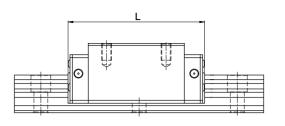


Table 1-1-19 Overall block length

unit: mm

C:	Overall block length (L)					
Size	SS	ZZ	DD	KK		
SR25C	97.9 (101.5)	99.9 (105.9)	102.3 (105.9)	104.3 (110.3)		
SR25H	114.4 (118)	116.4 (122.4)	118.8 (122.4)	120.8 (126.8)		
SR30C	109.8 (113.4)	112.8 (118.8)	114.6 (118.2)	117.6 (123.6)		
SR30H	131.8 (135.4)	134.8 (140.8)	136.6 (140.2)	139.6 (145.6)		
SR35C	124.0 (129.4)	127.0 (135.0)	129.0 (134.4)	132.0 (140.0)		
SR35H	151.5 (156.9)	154.5 (162.5)	156.5 (161.9)	159.5 (167.5)		
SR45C	153.2 (156.4)	156.2 (164.2)	160.4 (163.6)	163.4 (171.4)		
SR45H	187.0 (190.2)	190.0 (198.0)	194.2 (197.4)	197.2 (205.2)		
SR55C	183.7 (186.9)	186.7 (194.7)	190.9 (194.1)	193.9 (201.9)		
SR55H	232.0 (235.2)	235.0 (243.0)	239.2 (242.4)	242.2 (250.2)		
SR65C	232.0 (236.0)	235.0 (245.0)	240.8 (244.8)	243.8 (253.8)		
SR65H	295.0 (299.0)	298.0 (308.0)	303.8 (307.8)	306.8 (316.8)		

Note: The marking of "[]" denotes the maximum block length with screws, lips of end seals, etc.

1-9 Friction

The maximum value of resistance per end seal are as shown in the table.

Table 1-1-20 Seal Resistance

Size	Resistance N (kgf)	Size	Resistance N (kgf)
SR25	2.74 (0.28)	SR45	4.21 (0.43)
SR30	3.31 (0.31)	SR55	5.09 (0.52)
SR35	3.53 (0.36)	SR65	6.66 (0.68)

LTROBOT ® SR series

1-10 The Accuracy Tolerance of Mounting Surface

(1) The accuracy tolerance of rail-mounting surface

As long as the accuracy requirements of the mounting surfaces shown in the following tables are met, the high accuracy, high rigidity and long life of the SR series linear guide will be maintained without any difficulty.

• The parallelism tolerance of reference surface (P)

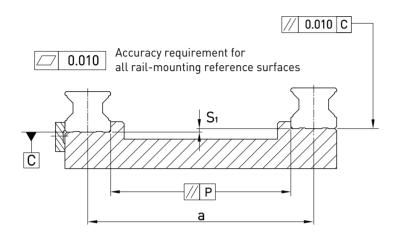


Table 1-1-21 Max. Parallelism Tolerance (P)

unit: µm

Size	Preload classes				
	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)		
SR25	9	7	5		
SR30	11	8	6		
SR35	14	10	7		
SR45	17	13	9		
SR55	21	14	11		
SR65	27	18	14		

• The accuracy tolerance of reference surface height (S₁)

 $S_1 = a \times K$

S₁: Max. tolerance of height

a : Distance between paired rails

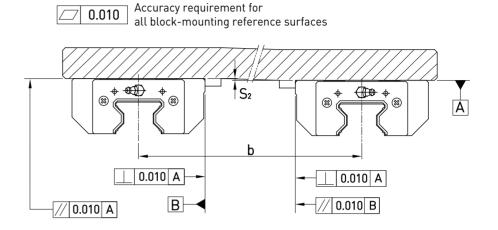
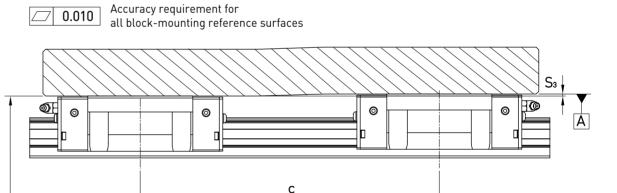

K: Coefficient of tolerance of height

Table 1-1-22 Coefficient of tolerance of height

Cino	Preload classes				
Size	Light Preload (Z0)	Medium Preload (ZA)	Heavy Preload (ZB)		
K	2.2×10 ⁻⁴	1.7×10 ⁻⁴	1.2×10 ⁻⁴		

(2) The accuracy tolerance of block-mounting surface


• The tolerance of the height of reference surface when two or more pieces are used in parallel (S₂)

 $S_2 = b \times 4.2 \times 10^{-5}$

S₂: Max. tolerance of height b: Distance between paired blocks

• The tolerance of the height of reference surface when two or more pieces are used in parallel (S₃)

 $S_3 = c \times 4.2 \times 10^{-5}$

// 0.010 A

S₃ : Max. tolerance of height

c : Distance between paired blocks

1-11 Cautions for Installation

(1) Shoulder heights and fillets

Improper shoulder heights and fillets of mounting surfaces will cause a deviation in accuracy and interference with the chamfered part of the rail or block.

By following the recommended shoulder heights and fillets, accuracy problems in installation can be eliminated.

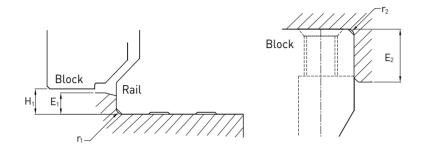


Table 1-1-23

Size	Max. radius of fillets r ₁ (mm)	Max. radius of fillets r ₂ (mm)	Shoulder height of the rail E ₁ (mm)	Shoulder height of the block E_2 (mm)	Clearance under block H ₁ (mm)
SR25	1.0	1.0	5	5	5.5
SR30	1.0	1.0	5	5	6
SR35	1.0	1.0	6	6	6.5
SR45	1.0	1.0	7	8	8
SR55	1.5	1.5	9	10	10
SR65	1.5	1.5	10	10	12

(2) Tightening Torque of Mounting Bolts

Improper tightening of mounting bolts will seriously influence the accuracy of a linear guide. The following tightening torque for the different sizes of bolt is recommended.

Table 1-1-24

Size	Bolt size	Torque N-cm(kgf	Torque N-cm(kgf-cm)										
3126	Dutt Size	Iron	Casting	Aluminum									
SR25	M6×1P×20L	1373 (140)	921 (94)	686 (70)									
SR30	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)									
SR35	M8×1.25P×25L	3041 (310)	2010 (205)	1470 (150)									
SR45	M12×1.75P×35L	11772 (1200)	7840 (800)	5880 (600)									
SR55	M14×2P×45L	15696 (1600)	10500 (1100)	7840 (800)									
SR65	M16×2P×50L	19620 (2000)	13100 (1350)	9800 (1000)									

1-12 Standard and Maximum Lengths of Rail

LTROBOT offers a number of standard rail lengths. Standard rail lengths feature end mounting hole placements set to predetermined values (E). For non-standard rail lengths, be sure to specify the E-value to be no greater than 1/2 the pitch (P) dimension. An E-value greater than this will result in unstable rail ends.

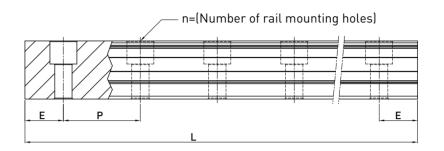
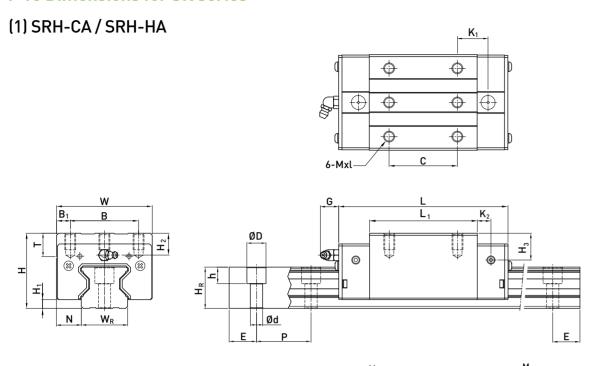


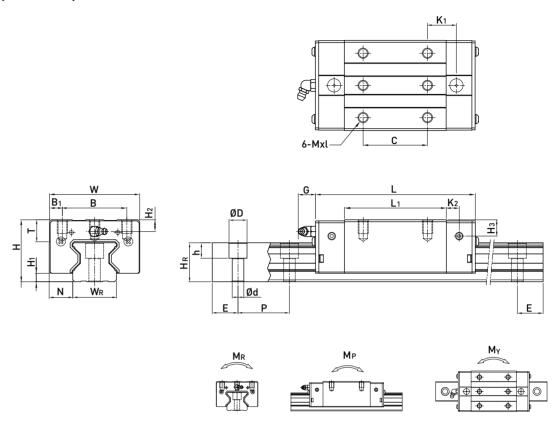
Table 1-1-25 unit: mm

Item	SRR25	SRR30	SRR35	SRR45	SRR55	SRR65
	220 (7)	280 (7)	280 (7)	570 (11)	780 (13)	1,270 (17)
	280 (9)	440 (11)	440 (11)	885 (17)	1020 (17)	1,570 (21)
	340 (11)	600 (15)	600 (15)	1,200 (23)	1,260 (21)	2,020 (27)
	460 (15)	760 (19)	760 (19)	1,620 (31)	1,500 (25)	2,620 (35)
Standard Length L(n)	640 (21)	1,000 (25)	1,000 (25)	2,040 (39)	1,980 (33)	-
	820 (27)	1,640 (41)	1,640 (41)	2,460 (47)	2,580 (43)	-
	1,000 (33)	2,040 (51)	2,040 (51)	2,985 (57)	2,940 (49)	
	1,240 (41)	2,520 (63)	2,520 (63)	3,090 (59)	3,060 (51)	-
	1,600 (53)	3,000 (75)	3,000 (75)	-	-	-
Pitch (P)	30	40	40	52.5	60	75
Distance to End (E _s)	20	20	20	22.5	30	35
Max. Standard Length	4,000 (133)	4,000 (100)	4,000 (100)	3,982.5 (76)	3,960 (66)	3,970 (53)
Max. Length	4,000	4,000	4,000	4,000	4,000	4,000


Note: 1. Tolerance of E value for standard rail is $0.5 \sim -0.5$ mm. Tolerance of E value for jointed rail is $0 \sim -0.3$ mm.

2. Maximum standard length means the max. rail length with standard E value on both sides.

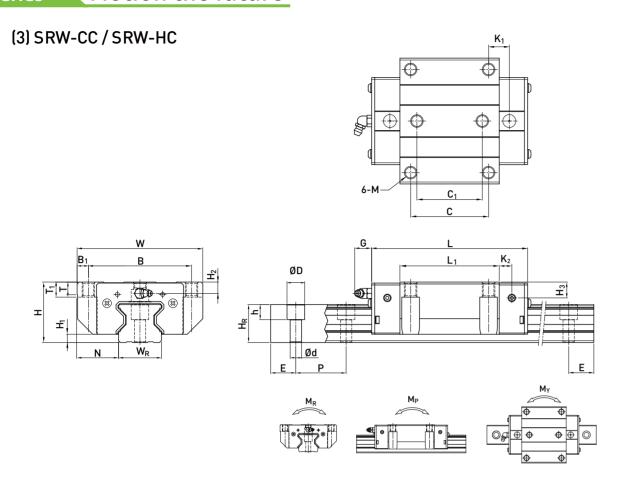
3. If different E value is needed, please contact LTROBOT.



1-13 Dimensions for SR series

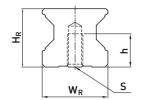
	of A		sions mbly		Dimensions of Block (mm) Dimensions of Rail (mm)												n)	Mounting Bolt for Rail	Basic Dynamic Load	Basic Static Load		atic Rat Moment		Wei	ght						
Model No.																									Rating	Rating	M _R	M _P	M _Y	Block	Rail
	H H ₁ N		w	В	B ₁	С	L ₁	L K ₁ K ₂ G		G	Mxl	T H ₂ H ₃		W _R	H _R	D			Р		(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m	kg	kg/m			
SRH25CA	/0		10 5	/0	25	/ E	35	64.5	97.9	20.75	7 25	12	M/ × 0	0 5	10.2	10	22	22 /	11	0	7	20	20	M/ ×20	27.7	57.1	0.758	0.605	0.605	0.61	3.08
SRH25HA	40	5.5	12.5	48	33	6.5			114.4		7.20	12	MOX8	9.5	10.2	10	23	23.0	11	9	/	30	20	M6 x20	33.9	73.4	0.975	0.991	0.991	0.75	3.08
SRH30CA	45	4	14	40	40					23.5	Ω	12	M8 v10	0.5	0.5	10.3	28	28	1.6	12	0	4 Ω	20	M8 x25	39.1	82.1	1.445	1.06	1.06	0.90	4.41
SRH30HA	43	Ü	10	00	40	10				24.5		12	1410 X 10	,	7.5	10.5	20	20	14	12	,	40	20	MOXZJ	48.1	105	1.846	1.712	1.712	1.16	4.41
SRH35CA		4.5	1Ω	70	50	10	50	79	124	22.5	10	12	M8 v12	12	14	10 <i>L</i>	3/	3U 3	1.6	12	0	۸,۵	20	M8 x25	57.9	105.2	2.17	1.44	1.44	1.57	6.06
SRH35HA	33	0.5	10	70	30					25.25		12	MOXIZ	12	10	17.0	54	30.2	14	12	,	40	20	1410 XZJ	73.1	142	2.93	2.6	2.6	2.06	0.00
SRH45CA	70	Ω	20.5						153.2		10	12 0	M10×17	14	20	24	45	30	20	17	1.6	52 5	22.5	M12 x35	92.6	178.8	4.52	3.05	3.05	3.18	9.97
SRH45HA	70	O	20.5	00	00	13			187		10	12.7	MITUXIT	10	20	24	43	30	20	17	14	JZ.J	22.5	W112 X33	116	230.9	6.33	5.47	5.47	4.13	7.77
SRH55CA	ΩN	10	22.5	100	75					37.75	12.5	12 0	M12v18	17 5	22	27.5	52	<i>l. l.</i>	23	20	1.6	40	วก	M1/, v/,5	130.5	252	8.01	5.4	5.4	4.89	13.98
SRH55HA	00	10	23.3	100						51.9	12.3	12.7	W112X10	17.3	22	27.3	55	44	23	20	10	00	30	14114 143	167.8	348	11.15	10.25	10.25	6.68	13.70
SRH65CA	on	12	21.5	124	74					60.8	15 Q	12 0	M14 v20	25	15	15	43	52	26	22	10	75	25	M14v50	213	411.6	16.20	11.59	11.59	8.89	20.22
SRH65HA										67.3	13.0	12.9	M16 x20	25	15	13	03	JJ	26	22	18	8 75 3	35	35 M16x50	275.3	572.7	22.55	22.17	22.17	12.13	20.22

(2) SRL-CA / SRL-HA



	of A		ions mbly		Dimensions of Block (mm) Dimensions of											f Ra	il (m	m)	Mounting Bolt for Rail	Basic Dynamic Load	Basic Static Load	ic Moment			Weight						
Model No.		· 																							Rating	Rating	M _R	M _P	M _Y	Block	Rail
		H ₁		w	В	B ₁	С			K ₁	K ₂		Mxl		H ₂	H ₃	W _R	H _R	D	h	d				C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m		kg/m
SRL25CA	0./		10.5	, 0	٥٦	, -	35	64.5	97.9	20.75	7.05	10	M/ 0	٥٠	<i>,</i> 0	,	00	00.7	11	_	_	00	00	M/ 00	27.7	57.1	0.758	0.605	0.605		0.00
SRL25HA	36	5.5	12.5	48	35	6.5	50	81	114.4	21.5	7.25	12	M6X8	9.5	6.2	6	23	23.6	11	9	/	30	20	M6x20	33.9	73.4	0.975	0.991	0.991		3.08
SRL30CA		,	1/	/0	/0			71			0	10	M010	0.5	, -	70	20	20	1/	10	_	/0	20	M8x25	39.1	82.1	1.445	1.06	1.06	0.80	4.41
SRL30HA			16	60	40			93				12	M8x10	9.5	6.5	1.3	28	28	14	12	9	40	20	M8X25	48.1	105	1.846	1.712	1.712		4.41
SRL35CA	0	4 5	10	70	ΕN	10	50	79	124	22.5	10	12	M0v12	12	0	12 4	2/	2N 2	1.6	12	0	<i>(</i> .0	20	M8x25	57.9	105.2	2.17	1.44	1.44	1.27	6.06
SRL35HA		0.0	10	70	30	10	72	106.5	151.5	25.25	10	12	MOXIZ	12	7	12.0	34	30.2	14	12	7	40	20	MOXZO	73.1	142	2.93	2.6	2.6	1.65	0.00
SRL45CA		0	20.5	0.4	40			106			10	12.0	M10~17	14	10	1./.	/ E	20	20	17	1./.	52 F	22 5	M12x35	92.6	178.8	4.52	3.05	3.05	2.47	9.97
SRL45HA		0	20.5	00	00			139.8			10	12.7	IVI IUXI/	10	10	14	40	30	20	17	14	32.3	22.3	MIZXXX	116	230.9	6.33	5.47	5.47	3.20	7.11
SRL55CA	70	10	22 E	100	75	12 E	75	125.5	183.7	37.75	12 E	12.0	M12v10	17 5	12	17 5	F2	1. 1.	22	20	14	۷.0	20	M1/v/5	130.5	252	8.01	5.4	5.4	3.91	13.98
SRL55HA		10	23.3	100	0 75				232 51.9		12.3	12.7	IM112X10	17.3	12	17.3	JS	44	23	20	10	00	30	M14X43	167.8	348	11.15	10.25	10.25	5.32	13.70

^{2.} The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: $C_{50R} = 1.23 \times C_{100R}$


Note: 1.1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: C_{50R} = 1.23 x C_{100R}



	of A		ions mbly		Dimensions of Block (mm)														D	imer	ısio	ns o	f Ra	il (m	m)	Mounting Basic Bolt for Load Rail		Static Load	Moment			Weight	
Model No.		· 																									Rating	Rating		M _P	M _Y	Block	Rail
	Н	H H ₁ N		w	В	B ₁	С	C ₁	L,	L	K ₁	K ₂	G	М	Т		H ₂	H ₃	W _R	H _R	D		d			(mm)	C(kN)	C ₀ (kN)	kN-m	kN-m	kN-m		kg/m
SRW25CC	2/	c c	22 5	70	E7	/ =	/ =	/ 0	64.5	97.9	15.75	7 25	12	MO	0.5	10	/ 2	,	22	22 /	11	0	7	20	20	M/v20	27.7	57.1	0.758	0.605	0.605	0.72	3.08
SRW25HC	36	5.5	23.5	70	5/	6.5	45	40	81	114.4	24	7.25	12	Mβ	7.5	10	6.2	0	23	23.0	11	9	/	30	20	MoxZU	33.9	73.4	0.975	0.991	0.991	0.91	3.08
SRW30CC			21	on	72	0	F2		71	109.8	17.5	0	12	M10	0.5	10	4 5	72	20	20	1.6	12	0	<i>(</i> .0	20	M8x25	39.1	82.1	1.445	1.06		1.16	
SRW30HC			31	70	12	7	52	44	93 1	131.8	28.5	0	12	MIU	7.0	10	0.0	7.3	20	20	14	12	7	40	20	MOXZO	48.1	105	1.846	1.712			4.41
SRW35CC	/, Q	4.5	33	100	82	0	62	52	79	124	16.5	10	12	M10	12	12	0	12 6	3/	3U 3	1.6	12	0	4 Ω	20	M8×25	57.9	105.2	2.17	1.44	1.44	1.75	6.06
SRW35HC			33	100	02	,	02		106.5			10	12	MITO	12	10	,	12.0	54	30.2	14	12	,	40	20	MOXZJ	73.1	142	2.93	2.6	2.6	2.40	0.00
SRW45CC	40	Ω	27.5	120	100	10	gη	40	106	153.2	21	10	12 0	M12	1/.	15	10	1.6	45	30	20	17	1.6	52 5	22.5	M12v25	92.6	178.8	4.52	3.05	3.05	3.43	9.97
SRW45HC	00	0	37.3	120	100	10	00	00	139.8	187	37.9	10	12.7	IVIIZ	14	10	10	14	43	30	20	17	14	JZ.J	22.5	MIZAGG	116	230.9	6.33	5.47	5.47	4.57	7.77
SRW55CC		10	/2 F	1/0	114	12	05	70	125.5	183.7	27.75	12 E	12 0	M17	14	17	12	17 5	F2	1.1.	22	20	14	۷0	20	M1/y/5	130.5	252	8.01	5.4	5.4	5.43	12 00
SRW55HC		10	43.3	140	110	12	73				51.9	12.3	12.7	IVI 14	10	17	12	17.5	JJ	44	23	20	10	00	30	M14X43	167.8	348		10.25			
SRW 65CC	on	12	52.5	170	1/,2	1.6	110	82	160	232	40.8	15 Q	12 0	M14	22	23	15	15	43	52	26	22	10	75	25	M14v50	213	411.6	16.20	11.59	11.59		20.22
SRW 65HC	70	12	55.5	170	142	14	110	82	223	295	72.3	13.0	12.7	14110	22	23	13	10	03	JJ	20	22	10	73	33	MINXJU	275.3	572.7	22.55	22.17	22.17		

(4) Dimensions for SRR-T (Rail Mounting from Bottom)

Model No.	Dimensions	of Rail (mm)					Weight
	W _R	H _R	S	h	Р	Е	(kg/m)
SRR25T	23	23.6	M6×1P	12	30	20	3.36
SRR30T	28	28	M8×1.25P	15	40	20	4.82
SRR35T	34	30.2	M8×1.25P	17	40	20	6.48
SRR45T	45	38	M12×1.75P	24	52.5	22.5	10.83
SRR55T	53	44	M14×2P	24	60	30	15.15
SRR65T	63	53	M20×2.5P	30	75	35	21.24

Note: 1. 1 kgf = 9.81 N 2. The theoretical dynamic rated load is C_{100R} , if necessary C_{50R} conversion formula is as follows: C_{50R} = 1.23 x C_{100R}